Solve for x :
Grab your laptop from the cart
But keep it closed until further directions are given

$$
\begin{aligned}
& x^{2}+8 x+15=0 \\
& x \begin{array}{|c|c|}
\hline x^{2} \mid 5 x \\
3 & \text { Factors } 15 \\
3 x \mid 15 \\
x+5 \\
\text { add } 8 \\
(x+3)(x+5)=0 \\
x+3=0 \quad x+5=0 \\
x=-3,-5
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+5 x-14=0 \\
& x \begin{array}{|c|c}
x^{2} & -2 x \\
\hline 7 x-14 \\
x-2 \\
(x+7)(x-2)=0 \\
x+7=0 \quad x-2=0 \\
x=2,-7
\end{array} .
\end{aligned}
$$

$$
\begin{aligned}
& 3 x^{2}+17 x+10=0 \\
& \text { Factors } 30
\end{aligned}
$$ add 17

$$
\begin{aligned}
& (x+15)(3 x+2)=0 \\
& x+15=0 \quad 3 x+y=0 \\
& -\frac{2}{3}=-\frac{2}{3} \\
& x=-15,-\frac{2}{3} \quad \frac{3 x}{3}
\end{aligned}
$$

Homework Check

1. "All rocks sink." Stony needs to find one rock that will not sink.
2. $\frac{5}{6}, 1$. Written with the common denominator 6 , the sequence becomes $\frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}, \frac{6}{6}$,
3. $-17,-21$. Four is subtracted from each term to get the next term.
4. 28,36 . To get from term to term, you add 2 , then add 3 , then add 4 , and so on.
5. 21,34 . To find each term, you add the two previous terms.
6. 49,64 . The terms are the squares of consecutive whole numbers: $1^{2}, 2^{2}, 3^{2}, 4^{2}, 5^{2}, 6^{2}, \ldots$ The next two terms are $7^{2}=49$ and $8^{2}=64$.
7. $-10,-24$. To get from term to term, you subtract 2 , then subtract 4 , then subtract 6 , and so on.
8. 64, 128. Each term is double the previous term.

2. $n+1 ; 36$
 2. $n+1 ; 36$

1. $2 \mathrm{n} ; 70$
2. $\frac{n(n-3)}{z^{2}} ; 560$

$$
\text { 5. } \mathrm{n}(\mathrm{n}-1) ; 595
$$

$$
2
$$

$$
\text { 6. } \underline{n(n-1)} ; 595
$$

$$
2
$$

2.4 Deductive Reasoning

Deductive Reasoning - the process of showing that certain statements follow logically from facts

Investigation 2.4 on Geometer's Sketchpad

Overlapping Angles Conjecture: If points C and D lie in the interior of $\angle A P B$ and $m \angle A P C=m \angle D P B$ then $m \angle A P D=m \angle C P B$

Overlapping Segments Coniecture: If $\overline{A D}$ has points $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D in that order with $\overline{A B} \cong \overline{C D}$, then $\overline{\mathrm{AC}} \cong \overline{\mathrm{BD}}$

\qquad

